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NONISOTHERMAL MODELING OF SHORT-TERM 
TEST CYCLES

A three-dimensional, anisotropic, nonisothermal, 
ground-water-flow and thermal-energy-transport 
model was used to simulate the four short-term test 
cycles. The model has the same discretization as the 
preliminary three-dimensional, isothermal ground-
water-flow model described by Miller and Delin (1993). 
Miller and Voss (1986) describe discretization of the 
model and the sensitivity of the lateral boundary 
conditions for various rates of heated-water injection.

The finite-difference, ground-water-flow, and 
thermal-energy-transport model used in this study was 
developed for waste-injection problems (Intercomp 
Resources Development and Engineering, 1976) and 
will be referred to in this report as the Survey Waste 
Injection Program (SWIP) code. The SWIP code can be 
used to simulate ground-water flow and heat and solute 
transport in a liquid-saturated porous medium; it 
contains both reservoir and well-bore modeling 
capabilities.

The major model assumptions are as follows:
1. Ground-water flow is laminar (Darcy), three

dimensional, and transient.
2. Fluid density is a function of pressure, temperature,

and concentration.
3. Fluid viscosity is a function of temperature and

concentration.
4. The injected fluid is miscible with the in-place fluids.
5. Aquifer properties vary with location.
6. Hydrodynamic dispersion is a function of fluid

velocity.
7. The energy equation can be described as: enthalpy in

minus enthalpy out equals the change in internal
energy of the system.

8. Boundary conditions allow natural water movement
in the aquifer and heat losses to adjacent
formations.

9. Thermal equilibrium exists within the simulated 
area.

The basic equation describing single-phase flow in a 
porous medium is derived by combining the continuity 
equation and Darcy equation for three-dimensional 
flow (Intercomp Resources Development and 
Engineering, 1976, p. 3.4):

(1)

where
ρ = fluid density [M/L3] (kg/m3),
µ = fluid viscosity [M/L-T] (kPa-s),

k  = intrinsic permeability [L2] (m2),
g  = gravitational acceleration [L/T2] (m/s2),
z  = spatial dimension in direction of gravity [L](m),
p = pressure [M/L-T2] (kPa),
q’ = mass rate of flow per unit volume from sources or

sinks [M/T-L3] (kg/s-m3),
t  = time [T] (s),
φ  = porosity [dimensionless], and
∇  = gradient (for an axially symmetric cylindrical

coordinate system ∇ is

where r is the radial dimension).
The energy-balance equation describing the transport 

of thermal energy in a ground-water system (Intercomp 
Resources Development and Engineering, 1976, p. 3.4) 
is:

(2)

where
H = enthalpy per unit mass of fluid [E/M] (J/kg),
K = hydrodynamic thermal dispersion plus

convection [E/T-L-t] (W/m-°C),
T = temperature [t] (°C),
qL  = heat loss across boundaries [E/T] (W)
U  = internal energy per unit mass of fluid [E/M]

(J/kg),
(ρCp)R  = heat capacity of aquifer matrix [E/L3-t] (J/m3-
°C), and 
Cp= specific heat of aquifer matrix [E/M-t] (J/kg-°C)
(All other terms are previously defined.)

Equations 1 and 2 are a nonlinear system of coupled 
partial-differential equations that is solved numerically 
by discretizing the aquifer into three dimensions (or two 
dimensions for radial flow) and developing finite-
difference approximations.

Finite-difference equations (Intercomp Resources 
Development and Engineering, 1976, p. 3.5) whose 
solutions closely approximate the solutions of equations 
1 and 2 are, for the basic flow equation:

(3)

and for the energy equation:

∇ ρk
µ
------ p∇ ρg∇z–( )• q′–

t∂
∂ φρ( )=

∂
∂r
-----

1
r
---

∂
∂θ
------ ∂

∂z
-----+ +

∇ ρk
µ
------H ∇p ρg∇z–( ) ∇ K ∇T qL– q′H–••+• =

∂
∂t
---- φρU 1 φ–( ) ρCp( ) TR+[ ]

∆ Tw ∆p ρg∆z–( )[ ] q–
V
∆t
-----δ φρ( )=

∆ TwH ∆p ρg∆z–( )[ ] ∆ Tc∆T( ) qL– qH–+ =


